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For over 40 years, in vivomicrodialysis techniques have been at the forefront in measuring
the effects of illicit substances on brain tonic extracellular levels of dopamine that underlie
many aspects of drug addiction. However, the size of microdialysis probes and sampling
rate may limit this technique’s ability to provide an accurate assessment of drug effects in
microneural environments. A novel electrochemical method known as multiple-cyclic
square wave voltammetry (M-CSWV), was recently developed to measure second-to-
second changes in tonic dopamine levels at microelectrodes, providing spatiotemporal
resolution superior to microdialysis. Here, we utilized M-CSWV and fast-scan cyclic
voltammetry (FSCV) to measure changes in tonic or phasic dopamine release in the
nucleus accumbens core (NAcc) after acute cocaine administration. Carbon-fiber
microelectrodes (CFM) and stimulating electrodes were implanted into the NAcc and
medial forebrain bundle (MFB) of urethane anesthetized (1.5 g/kg i.p.) Sprague-Dawley
rats, respectively. Using FSCV, depths of each electrode were optimized by determining
maximal MFB electrical stimulation-evoked phasic dopamine release. Changes in phasic
responses were measured after a single dose of intravenous saline or cocaine
hydrochloride (3 mg/kg; n � 4). In a separate group, changes in tonic dopamine levels
were measured using M-CSWV after intravenous saline and after cocaine hydrochloride
(3 mg/kg; n � 5). Both the phasic and tonic dopamine responses in the NAcc were
augmented by the injection of cocaine compared to saline control. The phasic and tonic
levels changed by approximately x2.4 and x1.9, respectively. These increases were largely
consistent with previous studies using FSCV and microdialysis. However, the minimal
disruption/disturbance of neuronal tissue by the CFM may explain why the baseline tonic
dopamine values (134 ± 32 nM) measured by M-CSWV were found to be 10-fold higher
when compared to conventional microdialysis. In this study, we demonstrated phasic
dopamine dynamics in the NAcc with acute cocaine administration. M-CSWV was able to
record rapid changes in tonic levels of dopamine, which cannot be achieved with other
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current voltammetric techniques. Taken together, M-CSWV has the potential to provide an
unprecedented level of physiologic insight into dopamine signaling, both in vitro and in vivo,
which will significantly enhance our understanding of neurochemical mechanisms
underlying psychiatric conditions.

Keywords: cocaine, tonic dopamine, addiction, voltammetry, nucleus accumbens, neuroscience, psychiatry, mental
disorders

INTRODUCTION

Substance dependence is a global public health problem. A 2019
survey revealed 20.4 million people aged 12 or older in the
United States suffered from substance use disorder (Substance
Abuse and Mental Health Services Administration, 2020).
Around 40–60% of patients experience relapse within one year
of treatment discharge (McLellan et al., 2000), which is
hypothesized to be a result of long-term neuroplastic changes
after chronic drug use (Kalivas and O’Brien, 2008). Therefore, it is
important to understand the neurobiology of addiction in order
to improve our treatment strategies.

Dopamine is widely implicated in addiction. Its functions
include determining the incentive value of naturally occurring
positive rewarding stimuli (e.g., food, water, and conspecific
mates) (Blaha and Phillips, 1996). Previous studies have also
demonstrated that dopamine release in the nucleus accumbens,
dorsal striatum, and the prefrontal cortex is a cardinal feature in
models of addiction, with dopamine receptor blockade in these
areas disrupting drug-seeking behaviors (Berke and Hyman,
2000; Ito et al., 2002; Vanderschuren et al., 2005; Murray
et al., 2012; Zbukvic et al., 2016; Hodebourg et al., 2019).
However, measuring dopamine with high temporal and spatial
resolution in vivo is a major challenge.

There are generally two distinct patterns of spike firing
exhibited by neuronal dopamine-containing cells in the
mammalian midbrain: tonic activity and phasic burst activity
(Grace, 1991; Grace, 2016). Phasic activity causes a transient and
robust release of dopamine in the synapse that serves as a learning
signal for neural plasticity (Schultz, 2007). Tonic activity refers to
continuous spontaneous extra-synaptic dopamine release driven
by pacemaker-like firing of dopamine neurons, providing a
relatively homeostatic extracellular level of dopamine
(i.e., tonic concentration) in the striatum thought to modulate
behavioral flexibility (Goto et al., 2007).

Tonic concentrations of dopamine in the brain have been
typically quantified in the sub-nM range using microdialysis
(Watson et al., 2006; Gu et al., 2015). Microdialysis has been
utilized for sampling neurochemical substances, such as
dopamine with high selectivity and sensitivity. However, it has
several drawbacks when compared to electrochemical techniques
(Robinson et al., 2003; Heien et al., 2004; Chefer et al., 2009;
Rodeberg et al., 2017; Kim et al., 2021). These include limited
temporal resolution ( ≥ 1 min) in comparison to voltammetry
(milliseconds to seconds), and the relatively large dimensions of
dialysis probes (typically > 200 μm), resulting in variable
physicochemical characteristics, tissue damage, and relatively
low spatiotemporal resolution (Morelli et al., 1992; Di Chiara

et al., 1993; Blaha et al., 1996; Chefer et al., 2009; Oh et al., 2018;
Rusheen et al., 2020). For these reasons, and the fact that it
requires continuous sampling from the brain and laboratory
analysis, its application in the human nervous system is limited.

In contrast, electrochemical methods, such as fast-scan cyclic
voltammetry (FSCV), have features that are well-suited to
quantitatively measure changes in extracellular dopamine
concentrations (Millar, 1997; Robinson et al., 2003; Huffman and
Venton, 2009; Lama et al., 2012). FSCV provides excellent temporal
resolution (milliseconds time response) and detection sensitivity (
<5 nM). In this technique, a carbon-fiber microelectrode (CFM,
diameter typically <10 μm) is held at a resting potential and then
ramped to an electric potential sufficient to oxidize and reduce the
electroactive species before the potential is returned to the resting
potential (Robinson et al., 2003). This results in a measured current,
which yields a cyclic voltammogram. The electrical scan takes less
than 10ms and is repeated every 100ms (corresponding to a rate of
10 Hz). The voltammogram gives a chemical signature, which can be
used to identify the chemical species of interest and quantify phasic
changes in extracellular concentration. However, because of a large
capacitive current which must be subtracted out to resolve the
faradaic current, the application of conventional FSCV provides
only measurements of phasic changes in neurochemical
concentrations (Howell et al., 1986). FSCV cannot measure
dysregulation in tonic concentrations of neurotransmitters
(minutes to hours) that are likely to be important characteristics
of many neurologic and psychiatric conditions (Dreher and Burnod,
2002; Berke, 2018).

For the measurement of tonic dopamine levels in the brain in real
time, several electrochemical techniques were developed such as fast-
scan controlled-adsorption voltammetry (FSCAV) (Atcherley et al.,
2013), square wave voltammetry (Taylor et al., 2019), and
convolution-based current removal technique (Johnson et al.,
2017). Among these techniques, FSCAV from Heien and
colleagues has been applied to study tonic dopamine levels in
various experiment setups (Atcherley et al., 2015; Burrell et al.,
2015; Abdalla et al., 2017). FSCAV utilizes adsorption properties of
dopamine to the carbon microelectrode using multiple conventional
FSCV waveforms. We have previously developed a technique that
uses cyclic square wave voltammetric waveforms, called Multiple-
Cyclic SquareWave Voltammetry (M-CSWV). The time resolution is
10 s, which is slower than FSCV but is well-matched to the timescale
of changes in tonic concentrations of dopamine relevant to the
pathologies of interest (Schultz, 2007). Since M-CSWV utilizes
square waveforms, M-CSWV is able to harvest higher dimensional
data for analysis that leads to higher sensitivity and selectivity than
other tonic level measurement techniques (Kim et al., 2019; Kim et al.,
2021).
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In this study, we aim to elucidate the acute effects of cocaine
administration on phasic dopamine release by using FSCV and
tonic dopamine levels by using M-CSWV in the nucleus
accumbens core (NAcc). Cocaine is one of the most common
illicit drugs with an increasing prevalence of use and dependence
(John and Wu, 2017).

MATERIALS AND METHODS

Animal Subjects
Ninemale Sprague-Dawley rats (Envigo, United States) were used
for this study. Rats were kept in social housing in an Association
for Assessment and Accreditation of Laboratory Animal Care
International (AAALAC) accredited vivarium following a
standard 12-h light/dark cycle at constant temperature (21°C)
and humidity (45%) with ad libitum food and water. The present
studies were approved by the Institutional Animal Care and Use
Committee (IACUC), Mayo Clinic, Rochester, MN. The NIH
Guide for the Care and Use of Laboratory Animals guidelines
(Department of Health and Human Services, NIH publication
No. 86-23, revised 1985) were followed for all aspects of
animal care.

Electrode Fabrication
CFMs were fabricated using an established standardized CFM
design atMayo Clinic. (Chang et al., 2013; Oh et al., 2016). Briefly,
each microelectrode involved isolating and inserting a single
carbon fiber (AS4, diameter � 7 μm; Hexel, Dublin, CA) into a
silica tube (20 µM ID, 90 µM OD, 10 µM coat with polyimide;
Polymicro Technologies, Phoenix, AZ). The connection between
the carbon fiber and the silica tubing was covered with epoxy
resin. The silica tubing was then attached to a nitinol (Nitinol #1,
an alloy of nickel and titanium; Fort WayneMetals, IN) extension
wire with a silver-based conductive paste (Chang et al., 2013). The
carbon fiber attached nitinol wire was insulated with polyimide
tubing (0.0089″ID, 0.0134″OD, 0.00225″ WT; Vention Medical,
Salem, NH) up to the carbon fiber sensing part. The exposed
carbon fiber was then trimmed under a dissecting microscope to a
length of 50 µm. Teflon-coated silver (Ag) wire (A-M systems,
Inc., Sequim, WA) was prepared as an Ag/AgCl counter-
reference electrode by chlorinating the exposed tip in saline
with a 9 V dry cell battery. CFMs were pretested in a flow cell
prior to coating deposition with a PEDOT:Nafion deposition
solution (Vreeland et al., 2015), which minimized the effect of in
vivo biofouling.

Implantation of Recording and Stimulating
Electrodes
Each rat was anesthetized with urethane (1.5 g/kg i.p.; Sigma-
Aldrich, St Louis, MO) and administered buprenorphine
(0.05–0.1 mg/kg s.c, Par Pharmaceutical, Chestnut Ridge, NY,
United States) for analgesia. Following anesthesia, they were
placed in a stereotaxic frame (David Kopf Instruments,
Tujunga, CA). Respiratory rate (RespiRAT, Intuitive
Measurement Systems), hind-paw and tail pinch were used to

monitor the physiological state and depth of anesthesia. Using a
standard rat atlas (Paxinos and Watson, 2007), three trephine
holes were drilled, the first for placement of a CFM into the NAcc
(AP 1.2 mm, ML 2.0 mm, DV 6–7 mm from dura), the second for
a stimulating electrode into the medial forebrain bundle (MFB)
(twisted bipolar stimulating electrode—Plastics One, MS 303/2,
Roanoke, VA, with the tips separated by 1 mm; AP −4.6 mm, ML
1.3 mm, DV 8–9 mm from dura), and a third for an Ag/AgCl into
the contralateral cortex (Clark et al., 2010) (Figure 1A).

Drug Administration and Recordings
The stimulating electrode in theMFB andCFM in theNAccwere first
adjusted to obtain a robust stimulation-evoked dopamine signal via
FSCV (−0.4–1.3 V sweep; 10Hz). MFB was chosen as it is known to
induce dopamine release in theNAcc (Ng et al., 1991; Shu et al., 2013).
For the phasic dopamine group, evoked responses (60Hz, 0.2mA,
2ms pulse width, 2 s duration) were recorded at pre-, 5, 10, and 20,
30 40, 50, 60min post-injection. This was performed using WINCS
Harmoni system (Lee et al., 2017), a wireless neurochemical sensing
system. Cocaine hydrochloride (Sigma-Aldrich, St. Louis, MO) at a
single bolus of 3mg/kg i.v., was used. Cocaine hydrochloride was
given for 5-min duration in all cases.

For the tonic dopamine group, the system was switched to the
M-CSWV sensing technique with electrodes at the same position after
identification of an optimal CFM position in the NAcc using FSCV.
Cocaine at the same dose and route as above was administered after
baseline and post-saline recording. Further recordings were
performed for another 90min to monitor the potentially lasting
effects of cocaine on tonic dopamine levels. Dynamic background
subtraction and capacitive background current modeling was used to
eliminate large capacitive background currents, allowing tonic
dopamine concentrations to be measured every 10 s (Oh et al.,
2018). Because of the uniqueness of the waveform, the
voltammetric outcome of M-CSWV provides a wealth of
electrochemical information beyond that provided by conventional
FSCV (Figures 1B–D).

Calibration of Electrodes
After experimentation, changes in dopamine release for phasic
studies were determined by calibration of CFMs using a flow cell
injection apparatus; whereas for tonic dopamine levels,
calibration with dopamine solutions were used (Oh et al.,
2018). The media used consisted of TRIS buffer (15 mM tris,
3.25 mM KCl, 140 mM NaCl, 1.2 mM CaCl2, 1.25 mM
NaH2PO4, 1.2 mM MgCl2, and 2.0 mM Na2SO4, with the pH
adjusted to 7.4) (Oh et al., 2018).

Modelling Dopamine Dynamics
Measurement of phasic dopamine release using FSCV offers many
important applications, including modeling dopamine release and
reuptake kinetics, and modeling the effects of pharmacologic agents
on these processes. To quantitatively characterize the effects of cocaine
administration on synaptic dopamine release, we used the restricted
diffusion model of Walters et al. (Walters et al., 2015). This model
proposes that the synapse-electrode system consists of two
anatomically separated compartments and allows for restricted
diffusion from the synaptic compartment to the electrode
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compartment. This allows for more accurate fitting of in vivo data
compared to previous models such as the diffusion gap model. We
applied the restricted diffusion model to our data to extract best-fit
estimates for the parameters Rp, kR, kU, and kT (see Table 1 for more
information). Best fit was evaluated with root mean square error
(RMSE). The model was fit to five sets of stimulation-induced phasic
dopamine releases with saline onboard, and five sets with cocaine on
board, 5min after administration.

Statistical Analysis
Statistical analysis was performed using ratio two-tailed paired
t-tests (PRISM 8, GraphPad). Significance was set at p < 0.05. In
the phasic experiments, three planned paired t-tests were

performed (response at 5 min after cocaine vs baseline, saline,
60 min post-cocaine). In the tonic experiments, the peak level
after cocaine injection was compared to baseline and saline levels.

RESULTS

Phasic Response and Dopamine Dynamics
Cocaine administration consistently led to enhancement of
stimulation-evoked dopamine responses (Figure 2). The evoked
phasic response at 5min after cocaine injection was significantly
higher than saline control (ratio two-tailed paired t-test, p � 0.0124,
n � 4 rats), baseline (ratio two-tailed paired t-test, p � 0.0326, n � 4

FIGURE 1 | Set-up of in vivo voltammetry experiment. (A) Rat surgery set-up. Recording and stimulating electrodes were inserted unilaterally into the core of the nucleus
accumbens and medial forebrain bundle, respectively. The counter-reference Ag/AgCl electrode was inserted contralaterally into cortical tissue. The rat is placed in a stereotactic
frame with tail vein access, heating pad, and pulse oximetry monitoring. (B,C) Schematic design of waveform-CSWV applied to the CFM and its response. (D) Left-to-right: Raw
voltammogram after removal of background currents, high-dimensional pseudo-color plot, M-CSWV signal calibration with tonic dopamine experiment (n � 4 electrodes).
Figures adopted from (Oh et al., 2018)with permission.Ag/AgCl, silver chloride reference electrode;CFM, carbon-fiber electrode;CSW, cyclic squarewave;MFB, medial forebrain
bundle; NAc, nucleus accumbens; stim., bipolar stimulating electrode. Parts of the Figure were created with Biorender.com.

TABLE 1 | Parameters calculated for the FSCV response pre-cocaine and 10 min post-cocaine, based on themodel byWalters et al. (Walters et al., 2015). N � 4 rats. S.E.M.
values provided. One-tailed paired t-test was performed. A range is provided in the reference values to account for the slow and fast dopamine domains (dorsal striatal
measurements based on medial forebrain bundle stimulation).

Parameters Best-fit estimates (cocaine) p-value

Pre-drug Post-drug

Dopamine release per stimulus pulse, RP (mols X 10–21) 6.98 ± 3.26 16.0 ± 3.34 0.093
Modifier for dopamine release, kR (s−1) −0.65 ± 4.72 −0.18 ± 0.20 Comparison cannot be made as some values were zero
Constant for dopamine uptake, kU (s−1) 1.08 ± 0.53 0.36 ± 0.09 0.028
Constant for dopamine transport, kT (s−1) 1.40 ± 0.22 1.40 ± 0.42 0.428
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rats) and 60min after cocaine administration (ratio two-tailed paired
t-test, p� 0.0225, n� 4 rats).With repeated stimulation performed for
60min after injection, the peak level dropped to the pre-injection
baseline level (Figures 2B,D).

Using the restricted diffusion model discussed in the Methods
section, the reuptake parameters for our experiments were calculated
both before and after cocaine administration (Table 1). This model
includes dopamine release per stimulus pulse and kinetic terms for
dopamine reuptake, transport, and release. Cocaine, a dopamine
reuptake inhibitor, would be expected to decrease the kinetic
parameter for reuptake. Indeed, this is what was found (p � 0.028)
(Table 1). Cocaine administration did not significantly influence the
values of the other kinetic parameters.

Tonic Response
As measured by M-CSWV, a representative example of the
temporal changes in tonic dopamine levels in response to
cocaine administration is shown in Figure 3. There were

variations in the temporal pattern and time to peak changes in
concentration (Figure 3A). Baseline recordings were taken for
30 min (Figure 3B), and saline was injected as a control
(Figure 3C). Cocaine was injected 90 min later and showed a
significant increase in tonic dopamine levels (Figures 3D–F). The
tonic dopamine levels were measured for 60–70 min post cocaine
injection. Overall, cocaine injections significantly increased
dopamine levels in NAcc from 134 ± 32 nM to 281 ± 60 nM
(ratio two-tailed paired t-test, p � 0.002, n � 5 rats) (Figure 3F).

DISCUSSION

This is the first study to characterize changes in tonic dopamine
levels in the NAcc in the presence of cocaine in near real-time
with an electrochemical technique in vivo. By utilizing the
M-CSWV technique with its unrivaled temporal resolution
and high spatial resolution provided by CFMs, we have

FIGURE 2 | Peak and gradual decay of cocaine-induced changes in stimulation-evoked dopamine release. In vivo FSCVmeasurements in the nucleus accumbens
core showing augmented dopamine responses to cocaine injection (3 mg/kg, i.v.). Responses were measured following medial forebrain bundle stimulation (2 s,
biphasic, 300 μA, 2 ms pulse width). (A) Representative pseudo-color plots pre- and post-cocaine injection, (B) Oxidative current-time traces, (C) Voltammograms (at
the peak) and (D) Maximum change in dopamine concentration with medial forebrain bundle stimulation at different time points (n � 4 rats). Black bar represents
electrical stimulation (2 s). *denotes p < 0.05. n � 4 rats. DA, dopamine.
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demonstrated a more precise picture of how tonic dopamine
dynamics change in response to acute cocaine administration.

Effects of Cocaine on Phasic Dopamine
Release
Themain findings of our study (see Figures 2A–D) are consistent
with the literature which has shown that cocaine (and opioids)
leads to increases in dopamine responses in the core of the
nucleus accumbens as measured using FSCV (Aragona et al.,
2008; Vander Weele et al., 2014). Aside from the robust increase
in stimulation-evoked dopamine release after cocaine
administration, dopamine release appeared to drop to below
pre-cocaine levels (see Figure 2D). However, this did not
reach statistical significance with this sample size. This may be
due to blockade of dopamine reuptake by cocaine leading to
decreased releasable vesicular pool over the course of the cocaine
effect, as well as the effect of continuous stimulation. However,
the latter is less likely to be the main contributor, given the
synapses were provided at least 10 min to recover between
stimulations. Further experiments would help to confirm this
phenomenon. Also, the reuptake constant, kU was lowered after

cocaine administration, which is expected since cocaine is a
competitive antagonist of the dopamine transporter and kU is
directly proportional to reuptake rate (see Table 1). Cocaine
administration would not be expected to influence kinetic
parameters for transport between the synapse and the
electrode. Consistent with these expectations, these other
parameters were not significantly influenced by cocaine
administration.

From previous studies, it was found that the NAcc appears to
consist of a patchwork of domains that show distinct dopamine
kinetics, each demonstrating slow and/or fast evoked responses
when the MFB is stimulated (Shu et al., 2013). The dopamine
phasic response within the core is also heterogenous in response
to cocaine self-administration (Owesson-White et al., 2009). This
may explain why there are differences in our values, compared to
values published by Walters et al. (2015), as well as the fact that
we used different pharmacological agents. The differences may be
accounted for by different stimulation parameters, especially the
duration of stimulation. However, they do have similar orders of
magnitude, which is expected, as both cocaine and nomifensine
act by limiting the reuptake of dopamine. As far as we are aware,
no studies have used this model to evaluate the evoked response

FIGURE 3 | An example of tonic dopamine measurements obtained from the nucleus accumbens core in a single rat with saline then cocaine i.v. injections. (A).
Changes in tonic dopamine concentration over time, where the black line denotes the stabilization period, blue line denotes control (saline) and red line denotes post-
cocaine measurements. (B–E). High-dimension color plots and voltammograms pre- and post-injections, corresponding to the time points (arrowheads) in (A),
respectively, (F) Comparison of tonic dopamine concentrations pre- and post-(peak) injection. Ratio two-tailed paired t-test, p � 0.002, n � 5 rats. See
supplementary information for a video of the experiment. DA, dopamine.
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of cocaine, therefore, our results could provide a benchmark for
future studies.

Effects of Cocaine on Tonic Dopamine
Levels
In previous microdialysis studies where cocaine was given acutely
(Bradberry et al., 1993; Pontieri et al., 1995), intravenous cocaine
led to rapid rise in nucleus accumbens tonic dopamine levels,
which peaked at 10–20 min (where dopamine was measured at
10–20 min intervals). Peak levels of dopamine varied between 150
to 400% of baseline. In addition, in pharmacokinetic studies,
cocaine was eliminated in a biexponential manner after i.v.
administration with mean elimination half-lives of 4.4 and
24.8 min, with a rapidly decaying serum concentration (Ma
et al., 1999; Sun and Lau, 2001). In our study, a trough was
observed in a subset of samples after the peak but not in all (see
Figure 3A). This may be due to dopamine depletion after the
sharp increase. This may be analogous to the small drop in the
mean phasic response at ∼60 min compared to pre-cocaine
baseline. Further experiments are needed to confirm this
phenomenon.

Previous studies have shown that dopamine release varies
widely among test subjects and within dopaminergic structures
(Verheij et al., 2008; Owesson-White et al., 2009; Shu et al., 2013),
necessitating a trial-and-error approach where the depths of CFM
and stimulating electrodes are continually adjusted until the so-
called “hotspot” is found. This hotspot is thought to occur when
the CFM is close to a site of large synaptic release of dopamine.
Variations in the location and behavior of these hotspots may
explain the variable effects we see after cocaine administration in
our study.

Overall, the present results suggest that M-CSWV can
measure drug-induced changes in tonic dopamine levels with
high temporal and spatial resolution when compared to
microdialysis. Most of these studies used microdialysis with a
temporal resolution of 10–20 min (Bradberry et al., 1993; Pontieri
et al., 1995; Cadoni et al., 2000). Despite recent developments to
reduce the resolution from 20 min down to 1 min (Gu et al., 2015;
Ngo et al., 2017), M-CSWV still provides a much higher time
resolution with the added benefit of spatial resolution and
minimal tissue disruption when used with CFMs.

It is important to note however, that there are two major
differences in our M-CSWV results in comparison to
microdialysis. First, the tonic dopamine concentrations are
very different in magnitude. Our baseline dopamine levels,
determined by post-in vivo calibration, were at around
100–200 nM; whereas microdialysis studies commonly report
values between 10 to 20 nM (Bradberry et al., 1993; Cadoni
et al., 2000). Although the order of magnitude differs by a
factor of ten, our values are broadly consistent with previous
accumbal and striatal dopamine concentrations measured by
various electrochemical techniques (Blaha, 1996; Atcherley
et al., 2015; Johnson et al., 2017; Oh et al., 2018; Taylor et al.,
2019; Barath et al., 2020). The possibility that other interferents
such as norepinephrine, which has similar electrochemical
properties as dopamine, may be a contributing factor in the

differences is unlikely since other studies have demonstrated that
the amount of norepinephrine and serotonin in the NAcc is
comparatively low (Andrews and Lucki, 2001; McKittrick and
Abercrombie, 2007; Zhang et al., 2020). Therefore, the disparities
likely represent the fundamental differences between
microdialysis and electrochemical techniques. Previous studies
have suggested that the traumatized layer of tissue of the order of
200 µm caused by the relatively large diameter of the
microdialysis probe may lead to a reduction in dopamine
extraction, although relative changes could still be measured
(Peters and Michael, 1998; Bungay et al., 2003; Borland et al.,
2005). This is minimized by the relatively small diameter of the
carbon fibers used in voltammetry. Being able to identify tonic
values may help to quantify differences between subjects, as well
as the diagnosis of different pathologies, especially given some
neuropathological diseases are known to be driven by
degeneration and depletion of neurotransmitters such as
dopamine (Denys et al., 2004; Beitz, 2014; Oliva and Wanat,
2016; Maia and Conceicao, 2018). With these advantages, there is
a strong argument that dopamine levels measured by M-CSWV
can serve as important biomarkers for monitoring treatments
with rapid bioavailability such as deep brain stimulation.

The other major difference is the relative change in magnitude.
Rather than a 400% increase as in the described literature, in our
study the dopamine signal mostly doubled. This may again be
attributed to the underestimation of baseline in microdialysis, as
well as the possibility that cocaine-induced increases in synaptic
dopamine may be affected by factors related to the physical
presence of the microdialysis probe, such as the formation of a
layer of traumatized tissue (Di Chiara et al., 1993; Blaha et al.,
1996). The rate and dose of drug administration may also have an
impact (Minogianis et al., 2019). As mentioned in the Methods
section, the rate was controlled at 5-min duration to avoid
overdosing. The use of different anesthetic agents in other
studies, such as chloral hydrate, may also lead to discrepancies
in results (Bradberry et al., 1993).

Our study focused on the NAcc, so the results should not be
generalized to the nucleus accumbens shell, since they are distinct
subdivisions of the accumbens or other regions. For example, in
one in vitro FSCV study, dopamine uptake in the shell was
approximately one-third of that measured in the core, and the
former was less sensitive to both cocaine and nomifensine
(dopamine reuptake inhibitor) (Jones et al., 1996). Also,
intravenous cocaine increased extracellular dopamine in the
shell more markedly than in the core of the rat nucleus
accumbens. Another study utilized immunochemistry to
demonstrate that dopaminergic axons in the shell contained
lower densities of dopamine transporter than those in the core
(Nirenberg et al., 1997). This suggests a more tightly regulated
phasic dopamine transmission in this subregion and highlights
the value of both phasic and tonic measurements across both
regions for future work. In addition, Dreyer et al. utilized a
computer model to interpret in vivo FSCV data from the NAcc
and shell after rodents were administered cocaine (Dreyer et al.,
2016). After studying the dynamics involved in presynaptic
terminal autoreceptor feedback, they concluded that
extracellular dopamine concentrations in the core resulted
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from constant dopamine firing, whereas the shell concentrations
reflected dynamic firing patterns. This supported our decision to
record from the NAcc using this new tonic dopamine
measurement method.

While our technique focuses on a single analyte, dopamine, and
therefore may not be as comprehensive as microdialysis studies,
precise measurement of dopamine alone is still highly important.
Dopamine has a major role in the reward circuit and is one of the key
neurotransmitters in the pathophysiology of addiction (Berke and
Hyman, 2000). Newer techniques have also been devised to
voltammetrically measure serotonin with high sensitivity and
selectivity, which can be incorporated in future study designs (Shin
et al., 2020). DLight, which is a new technique that uses genetically
encoded indicators based on fluorescent proteins with microscopy
also allows measurements of neurochemicals with high temporal
resolution (Patriarchi et al., 2018). However, the need for a viral
vector currently limits its potential use in human subjects.

Another notable characteristic of this study is that the animal
experiments were performed under anesthesia in an acute setting
using a single dose of cocaine. While we appreciate that addiction is
often secondary to chronic drug use in humans, acute experiments
offer insight into the first step of the pathophysiological process.
Additionally, this study paves the way for future chronic experiments
by proving the feasibility of this technique to study the effects of other
drugs of abuse. In the future, it is our intention to apply theM-CSWV
intraoperatively, particularly in the context of neurological (e.g.,
Parkinson’s disease) and psychiatric (e.g., addiction) disorders.

Although cocaine is known to enhance dopamine
transmission in the nucleus accumbens, this is the first study
that utilized M-CSWV to measure accumbal tonic dopamine
levels, and to characterize the effect of cocaine on these levels in
near real-time. Overall, this technique provides unprecedented
insight into the temporal changes in dopamine dynamics, and it
will likely be of much value in future addiction studies.

Supplementary video. An example of tonic dopamine
measurements obtained from the NAcc in a single rat with
saline then cocaine i.v. injections. Upper panel shows the color
plot and the lower panel shows the changes in tonic dopamine
concentration over time, where the black line denotes the
stabilization period, blue line denotes control (saline) and red
line denotes post-cocaine measurements.
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